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1 Introduction

In a recent paper [3], Georgiev and Venkov establish first radial symmetry and then
uniqueness of minimizers to the action functional

Sω(u) =
1

2
||∇u||22 +

1

4
A(|u|2)− 1

2

∫
R3

|u(x)|2

|x|
dx+

ω

2
||u||22

on H1(R3) and for ω ∈ ( 1
16 ,

1
4 ). Here the convolution term

A(v) =

∫
R3

∫
R3

v(x)v(y)

|x− y|
dxdy

reflects the nonlocal effect of the Coulomb potential. If the convolution term A had
the opposite sign, as already remarked in [3], one could use symmetrization results
to prove the symmetry of minimizers by variational arguments. This was in fact
done in [7]. Instead, Georgiev and Venkov used a variant of the reflection method
to prove symmetry, and then they analyzed the Euler equation, which was now an
ordinary differential equation in r = |x| to establish uniqueness. For the symmetry
proof they had to assume ω > 1/16.

In the present paper we prove first the uniqueness of possible positive minimizers
(for any ω ∈ R, although positive minimizers can only exist for 0 ≤ ω < 1/4) by
revealing a hidden convexity property of the underlying functional. It turns out,
that the “bad” sign in front of the convolution term is in fact “very good” because it
has a strict convexity property. Then symmetry follows from the simple observation
that uniqueness fails if there is a nonradial minimizer, because it could be rotated
and give rise to a second minimizer.
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2 Main result

Since Sω(u) = Sω(|u|), if there exists a minimizer, there is also a nonnegative one,
and it satisfies the associated nonlinear and nonlocal Euler equation

−∆u(x) + ωu(x) +

∫
R3

|u(y)|2dy
|x− y|

u(x) =
u(x)

|x|
≥ 0 (2.1)

both in a weak and classical sense, classical except possibly at zero. Hence, by the
strong maximum principle, nonnegative solutions are positive everywhere except
possibly at zero.

Theorem 2.1. Almost everywhere positive minimizers of Sω are unique, because
Sω(u) = Tω(|u2|) if u > 0 a.e., and the functional

Tω(v) :=

∫
R3

|∇v|2

4v
dx+

1

4
A(v) +

∫
R3

(
− 1

2|x|
+
ω

2

)
v dx

is strictly convex on the convex set V := {v = |u|2 | u ∈ H1(R3), u > 0 a.e.}.

Remark 2.2. Our argument still works if the variational problem is subject to the
physically relevant constraint ‖u‖22 = 1. In terms of v, this constraint amounts to∫
R3 v dx = 1, which is affine in v. Moreover, in this case the value of ω is irrelevant,

as the term ω
2 ||u||

2
2 then just adds a constant in the functional.

For the proof we show in Lemmata 2.3 and 2.5 that all three terms are convex
and that at least one of them is strictly convex in v. The last term is linear in v,
so it is convex. To show that the convolution term is convex, one can calculate its
second variation in direction ϕ ∈ C∞0 (R3).

∂2A

∂ϕ2
(u) =

∫
R3

∫
R3

ϕ(x)ϕ(y)

|x− y|
dxdy,

and notes that this is nonnegative even for sign-changing ϕ, a fact that has long
been known in potential theory, see [6]. Finally, the convexity of the first term and
of more general functionals was stated as Proposition 4 in [5], and inspired by [4].

For the reader’s convenience, let us also show that the functional Sω is well-
defined and finite for every u ∈ H1(R3).

Lemma 2.3. Let N = 3. Then H1(RN ) is continuously embedded in L
4N

N+2 (RN ),
and the functional

A(|u|2) =

∫
RN

∫
RN

u2(x)u2(y)

|x− y|N−2
dx dy (2.2)

is well-defined for u ∈ H1(RN ).
Moreover, A(v) is strictly convex on {v = |u|2 | u ∈ H1(RN )}.
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Proof. For 0 < α < N and x ∈ RN let

kα(x) :=
1

Cα

1

|x|N−α
, with the constant Cα := π

N
2 2α

Γ(α2 )

Γ(N−α2 )
> 0,

denote the kernel of the Riesz potential, whose Fourier transform is given by ξ 7→
|2πξ|−α (see [10] or [6], e.g.). For the integrability properties of convolutions with
kα we recall the Hardy-Littlewood-Sobolev inequality for Riesz potentials: For
0 < α < N , 1 < p <∞ and 1 < q <∞ such that 1

q = 1
p −

α
N , and for u ∈ Lp(RN ),

we have that
‖kα ∗ u‖Lq(RN ) ≤ C ‖u‖Lp(RN )

with some constant C > 0 (where ∗ denotes convolution). In particular, this

implies that v · (k2 ∗ v) ∈ L1 and k1 ∗ v ∈ L2 if v ∈ L
2N

N+2 , the former by Hölder’s
inequality. By Sobolev’s embedding theorem, if u ∈ H1(RN ) and N = 3, then

u2 ∈ L
N

N−2 (RN ) ∩ L1(RN ) = L3(R3) ∩ L1(R3) and a fortiori |u|2 ∈ L
2N

N+2 (RN ) =

L
6
5 (R3). This shows that A(|u|2) is well defined on H1(R3).

To show convexity, we essentially follow the proof of [6, Theorem 1.15]. Observe
that A is a quadratic form and that it suffices to show that A(v) ≥ 0 for every v,
with strict inequality if v 6= 0. Since kα ∗ kβ = kα+β for arbitrary α, β > 0 with
α+ β < N , we obtain that

C2A(v) =

∫
RN

v · (k2 ∗ v) dx

=

∫
RN

v ·
(
(k1 ∗ k1) ∗ v

)
dx

=

∫
RN

∫
RN

∫
RN

v(x)k1(x− y − z)k1(z)v(y) dx dy dz

=

∫
RN

∫
RN

∫
RN

v(x)k1(x− z)k1(z − y)v(y) dx dy dz

=

∫
RN

(k1 ∗ v)2 dz ≥ 0,

where we also used the fact that k1(x− z) = k1(z − x).
Moreover, the last inequality is strict unless k1 ∗ v = 0, and this may happen

only if the Fourier transform of k1∗v vanishes, i.e., |2πξ|−1 v̂(ξ) = 0 for a.e. ξ ∈ RN .
Clearly, this is possible only if v̂ = 0 and thus v = 0.

In the next lemma we show that the term containing the weight 1/|x| is well de-
fined on H1(RN ), because the right hand side in (2.3) is dominated by ||u||2H1,2(RN ).

Lemma 2.4 (cf. Remark 6 in [9]). For N ≥ 2 and every u ∈ H1(RN ),∫
RN

u2(x)

|x|
dx ≤ 2

N − 1

∫
RN

|u(x)∇u(x)| dx. (2.3)
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Moreover, equality holds in (2.3) if and only if u is radially symmetric and u(x)∇u(x)·
x ≤ 0 for a.e. x ∈ RN .

Proof. We proceed as in the proof of Hardy’s inequality in [2]. Clearly, it suffices
to show (2.3) for u ∈ C1(RN ) with compact support. Since

d

dt
u(tx)2 = 2u(tx)∇u(tx) · x,

we obtain that ∫
RN

u2(x)

|x|
dx ≤

∫
RN

∫ ∞
1

2 |u(tx)∇u(tx)| dt dx

=

∫ ∞
1

2t−N
∫
RN

|u(x)∇u(x)| dx dt

=
2

N − 1

∫
RN

|u(x)∇u(x)| dx.

Moreover, equality holds if and only if −u(y)∇u(y) ·y = u(y) |∇u(y)| |y| for a.e. y ∈
RN . This is the case precisely if u is radially symmetric and u∂u∂r ≤ 0.

It remains to establish the convexity of the first term in Tω. This will follow
from the following lemma.

Lemma 2.5. Let f : RN × (0,∞)→ [0,∞) be defined by f(ξ, µ) :=
|ξ|2

µ
. Then f

is convex in (ξ, µ).

Proof. The Hessian of f is given by

H := D2
(ξ,µ)f(ξ, µ) =

2

µ2


µ −ξ1

. . .
...

µ −ξN
−ξ1 · · · −ξN |ξ|2

µ

 ∈ R(N+1)×(N+1).

It suffices to check that H is non-negative definite. This is easily done by noticing
that (Hy, y) ≥ 0 for every y ∈ RN+1. Alternatively, the characteristic polynomial

of µ2

2 H is

p(λ) := det
(
µ2

2 H − λI
)

= (µ− λ)N−1
(

(µ− λ)
( |ξ|2
µ − λ

)
−
∑N
i=1ξ

2
i

)
= (µ− λ)N−1

(
λ−

( |ξ|2
µ + µ

))
λ,

and all its roots are non-negative.
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Remark 2.6. Incidentally, according to [1] ”uniqueness of the minimum easily
follows from nodal line properties”, but this argument appears to be wrong. If there
are two genuinely different positive minimizers of a quadratic functional, which
solve a linear equation, a suitable linear combination will be another minimizer
that has nodal sets and changes sign. For nonlinear equations one cannot expect the
same behaviour unless one proves a convexity property of the underlying functional.
This is what we did in Theorem 2.1.

We conclude with brief variational arguments for nonexistence of positive solu-
tions. Existence proofs for ω ∈ [0, 1/4) can be found in [9] (for ω = 0, instead of
H1(R3) a more natural, larger space is used). Let Iω := infu∈H1(R3) Sω(u).

If ω < 0 then Iω = −∞. To see this one observes that for fixed u ∈ H1(R3)

and uδ(x) := δ
3
2u(δx), δ > 0,

lim
δ→0+

Sω(uδ) = lim
δ→0+

ω

2
‖uδ‖2L2(R3) =

ω

2
‖u‖2L2(R3) .

On the other hand, if ω ≥ 1
4 , then Iω = Sω(0) = 0, and Sω(u) > 0 for u 6= 0. This

follows from the observation that by Lemma 2.4,

Sω(u) ≥ 1

2

(
ω − 1

4

)
||u||2L2(R3) +A(|u|2).
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of atoms and molecules. Comm. Math. Phys. 79 (1981) 167-180.

[5] B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-
type inequalities, Discr. and Cont. Dyn. Systems 63 (2000) 683-690.

[6] Landkof, N. S., Foundations of modern potential theory. Translated from the
Russian by A. P. Doohovskoy. Die Grundlehren der mathematischen Wis-
senschaften, Band 180. Springer-Verlag, New York (1972).



6

[7] E. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s
nonlinear equation, Stud. Appl. Math. 57 (1977) 93–105

[8] E.H. Lieb & B.Simon, The Hartree-Fock Theory for Coulomb Systems. Comm.
Math. Phys. 53 (1977), 185-194.

[9] P.-L. Lions, Some remarks on Hartree equation, Nonlinear Analysis TMA 5
(1981), 1245-1256.

[10] E.M. Stein, Singular integrals and differentiability properties of functions.
Princeton Mathematical Series, No. 30. Princeton University Press, Prince-
ton, N.J. (1970).

Authors address:

Bernd Kawohl and Stefan Krömer
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